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Abstract. In order to satisfy exact sum-rule requirements for correlation function structure
at complete wetting, a two-field HamiItoniaH,(Z)[ll,lz], modelling the coupling of order-
parameter fluctuations near the wall and unbinding interface, has been introduced. The model is
characterized by a stiffness matriX(l1, /), whose bare (unrenormalized) elements are related

to the mean-field free energy. We extend previous renormalization group studies to include the
position dependence of the matrix elements and derive an elegant operator relationship which
shows that the flow of the cross-coupling teBmy(/1, /2) parallels that of the free energy. This
establishes the validity of a stiffness matrix—free-energy relation in the presence of fluctuation
effects at the marginal dimensieh= 3 for systems with short-ranged forces. We further show
that an analogous relation exists for systems with long-ranged molecular interactions.

1. Introduction

Recently significant advances have been made towards solving problems related to the
theory of wetting in three-dimensional systems. In particular, new effective Hamiltonian
models and methods have been proposed which improve upon phenomenological (capillary-
wave) approaches and clarify the connection with ‘microscopic’ models which have proven
too difficult to analyse [1-6]. These have led to new predictions [7—11] for fluctuation
effects at the marginal dimensionality= 3 (for systems with short-ranged forces) which
are in encouraging agreement with old and new Ising model simulation results [12, 13].
Here we further analyse the fluctuation properties of the ‘two-field’ model ottmeplete
wetting transition which is based on a coupled HamiltoniHlﬁz)[ll, [] characterized by
a stiffness matrixx(/1, lz). We have shown elsewhere that the (bare) parameters in this
model satisfy a so-called stiffness matrix—free-energy (SMFE) relation which guarantees that
an exact statistical mechanical sum rule is satisfied at mean-field (MF) level [4, 5]. This
requirement is not met by the capillary-wave (CW) and Fisher-Jin (FJ) [1, 2] models (even
with the latter's position-dependent stiffness coefficient) which do not allow for coupling
in order-parameter fluctuations near the wall and unbinding interface.

In this paper we extend the renormalization group (RG) analysisl,@f (presented
in [7]) to include the position dependence of the stiffness matrix elements, and show that
the SMFE relation retains its form under RG flow. Indeed beyond MF the SMFE relation
takes the form of an elegant operator identity which ensures that the RG flow of the leading-
order matrix elemenki,(l1, ) parallels that of the free energy. As a consequence the sum
rule is obeyed even in the presence of fluctuation effects which alter the value of critical
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amplitudes at the upper critical dimensigr= 3. We believe that this is a significant success

of the two-field theory and underlines the importance of allowing for coupling effects in
the development of a self-consistent thermodynamic theory of complete wetting. To begin
we first recall the derivation of the bare SMFE relation and comment on its interpretation.

2. The mean-field SMFE relation

2.1. Microscopics

A suitable starting point for the study of phase equilibria in semi-infinite systems with
short-ranged forces is the Landau—-Ginzburg-Wilson (LGW) Hamiltonian [14]

Higwlm] = / dy / dz Lim, Vm) 2.1)
0
with
K
L(m,Vm) = E(Vm)2 + ¢(m(r)) + 6(z)p1(m(r)) (2.2)

wherez measures the distance normal to the (planar) wall@aislthe displacement vector
along it. Here¢(m) and ¢1(m) are bulk and surface free-energy densities respectively;
¢(m) has (for subcritical temperatureéd < 7,.) a standard double-well form showing
bulk two-phase coexistence between phage@vith mg > 0) anda (with m, < 0) in
zero bulk field,» = 0. We shall assume tha; is given by the standard expression
¢1(m) = —(hym + gm?/2) with hy the surface field ang the enhancement. The MF phase
diagram of (2.1) is well understood [15] and exhibits first-order, tricritical and complete
wetting transitions. Although the model cannot be solved exactly it is believed that these
features survive beyond the MF level. Here we concentrate on the case of the complete
wetting transition whereby the wall-interface is completely wet by thg-phase in the
limit of bulk two-phase coexistence — 0~ (say), i.e. we assume that we are above any
wetting temperaturdyy, .

In MF approximation, minimization of (2.1) with respect to magnetization configurations
determines the (MF) equilibrium profile(z) and leads to the well known expression for
the excess free energy per unit area (or surface tension)

¥ = K/ dz m'(2)% + ¢1(m1) (2.3)
0

with m; the surface magnetization; = m(z = 0) and where we use primes to denote
differentiation with respect to the argument. To evaluate this we have to specify what the
bulk phase is, i.e. whether we consider the walbr wall-8 phase interface. In the approach

to a wetting transition in which th@-phase wets the wall~interface it is customary to
write the surface tension of the wadl-phase interface as

Ypa = Ewﬂ + Eaﬁ + fsing (24)

where the three terms on the right-hand side correspond to thegagalfiase interfacial
tension, freeap-surface tension, and singular contribution to the excess free energy
respectively. The singularity in the free energy at complete wetting, writterisgs~
|h|>~%" determines the thickness of the wetting layer |2|~#" and transverse correlation
length & ~ |n|™" via the exponent relations * o[” = —g{” anda(” = 2v|°. In MF
approximation, explicit calculation yields

feing~ hIn|h| (2.5)
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corresponding te;” = 1 consistent withg{* = O(In) andv|* = 1/2.

The order-parameter correlation functigi(ry, r,) = (m(ri)m(ry)). can also be
calculated in MF theory. For this it is convenient to introduce the transverse Fourier
transform

G(z1,22; Q) = /dylz G (ry, ry) (2.6)

and its moment expansion
G(z1, 22 Q) = ) 0% Gon(21, 22). 2.7)
n=0

Two functional derivatives of (2.1) with respectigr) define the direct correlation function
C(ry, 72) (in MF approximation) which may be substituted into the Ornstein—Zernike
integral equation to yield

(—K32 + K Q%+ ¢"(m(z0))F(z1. 221 Q) = 8(z1 — 22) (2.8)

where we have sétz T = 1 for simplicity. Solving this equation we find that the properties
of the second moment at the wall are particularly interesting, and explicit calculation shows
(see for example [16])

— (X — ¢1(my))
(cm’(0) — m"(0))?

for both wa- and wB-interfaces. The denominator is well behaved in the approach to the
complete wetting transition, and attention focuses on the numerator which shows that the
correlations at the wall for the walk-interface ‘know’ about the full excess free energy.
This is symptomatic of the coherence of asymptotically long-wavelength fluctuations in
the wetting film, and establishes a crucial connection between correlation functions and
thermodynamic singularities.

There are very good reasons for believing that the relationship (2.9) is exact beyond the
MF level since a very similar equation is known to be precisely true for the case of ‘drying’
by a vapour phaseg) at a hard-wall-liquid {«-) interface (see section 4). Thus (2.9)
may be considered to be an exact sum-rule requirement. The problem, then, is to construct
an effective-Hamiltonian theory (based on a collective coordinate) for thermodynamic and
correlation function properties valid at MF level and beyond which is consistent with this
exact sum-rule requirement. This task is not as simple as it may appear because the process
of integrating out degrees of freedom, essential in the derivation of effective (or low-
energy) Hamiltonians, is seldom precise (or systematic). Furthermore, even if this problem
is overcome, the reconstruction of order-parameter correlations from collective coordinate
distributions still needs to be addressed.

G2(0,0) =

(2.9)

2.2. Two-field theory

Traditional capillary-wave approaches (and their extensions incorporating a position-
dependent stiffness coefficient), which are based on a single collective coordiqgte (
say) describing the position of thes-interface, do not satisfy the sum rule at MF level
where they fail to capture the terrfiing ~ 2 In|k| appearing in the numerator of (2.9).
However, progress can be made using a ‘two-field’ Hamiltonian

1
HP[l, 1)) = / dy [EEM(ll, 1)V, - Vi, + WO, lz):| (2.10)
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wherel(y) (I1(y)) represents a surface of fixed magnetizatieh (m7) which unbinds
from (remains bound to) the wall in the limit of complete wetting. Note thay) is an
interface-like collective coordinate which models order-parameter fluctuations at the wall
via translations in the surface of fixed magnetizatioff ~ m;. Such a description is
appropriate for complete wetting occurring at temperatufes> Ty where there is a
significant homogeneity at the wall (for further details see [6]). The coefficiBpisl1, I2)

can be considered the elements of a stiffness mairi¥, o) which plays an essential role

in the theory. Explicit expressions f& and W@ may be calculated in terms of the planar
constrained profilen? (z; I, I,) corresponding to the profile which minimizes (2.1) subject
to the double crossing constramlf) =l )= m . In particular, calculation yields

WOy, Ip) = /dz L@, 0,m®) 2.11)

and

om®@ gm®@
Yl ) = K/ M O dz w,v=1,2 (2.12)
V
Minimization of the binding potentlaﬂV(z) recovers the MF positions,, say, of the surfaces
of fixed magnetizatiom:; .
Subtracting off a trivial bulk contribution t&@ (i.e. terms which are independent of
[1, 1) we can identify the MF free-energy singularity as

Jsing = W@ (21, 2). (2.13)

Continuing with the formalism, an important advantage of the two-field approach is
the ability to make precise connection with the MF correlation functigas,, z,; Q) for
particle positions near the wall and unbinding interface. To see this, consider the matrix
elements

S (Q5 21, 22) = /dy eY(81,(Q) 81,(Q)) (2.14)

wheresl, = 1,(y) — (I,(y)), and recall that thenfj are chosen such that, (y)) = z,,
w =1, 2. Hereafter we are generally considering the case whete0 andz, corresponds
to the position of the zero of the magnetization profile (b is a measure of the thickness

of the wetting layer). The correlation functions are then determined by the relations

g(Zu.v v Q) = m/(Zp.)m/(Zv)Su,v(Q; 21, 22)- (215)
The matrix elements,,, may be calculated using the relationship [5]

s-1 0 0 w® 13 (2.16)

py T 82 a + Q :
12 22
whered’ = 92/dl; 1; and is evaluated at equilibrium), = z,,. Note that in writing (2.16)
we have neglected terms(Q*) associated with the rigidity matrix—these play little part
in our description of long-wavelength fluctuation effects at wetting.
Calculations are made easier on noting the separable property of the binding potential
WOy, 1p) =Ul) + W(lz — 1) (2.17)

whereU (/1) serves to bind the lower surface of fixed magnetizatigh~ m; to the wall
(with z; ~ 0). The relative ternW (I, — l1) is rather similar to the expression found in older
capillary-wave approaches:

W) =hl +a(T, hy,..)e" " +... (2.18)
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Figure 1. Diagrammatic representation of the bare SMFE relation. The functi@is(® and
W () intersect at (or very close to) the minimum ®f(/). The value of the functions at this
extremum is equal to the singular part of the free energy.hAs reduced the locus of the
binding potential minimum follows the curve o2,(/).

where# is proportional to the bulk ordering fieldl o« —#, the coefficientz is positive (for

T > Ty) andk is the inverse bulk correlation length of the wetting phase. To understand
the sum-rule result (2.9) for the«a-interface we first calculat€;1(Q; z1, z2) using the
stiffness matrix formalism, finding

1
U" + Q?[Z11+ (S22 + 2812) /(1 + Q?ED)]
where the transverse correlation length is identified (in standard fashi@*j):?lSZzz/ w”
and all quantities are evaluated at the equilibrium positions of the collective coordinates.
The non-Lorentzian form of this structure factor has been elucidated at length in [16]. The

numerator in the sum rule may be related to ¢ghe- 0 limit of the terms in square brackets
in (2.19). From (2.12) we have

2 2 @ 4@ am@  am@\2
ZEMU:KZ/ (’" e ):K/dz(g"—l’l’Jr ZZ) (2.20)

uv=1 uv=1 Ly

$11(Q; 21, 22) = (2.19)

At equilibrium the integrand is simply the square of the total derivative with respegt to
S0

d
Z S =K / ( d’") Sua — $1(m1) (2.21)

n,v=1

by virtue of (2.3). This is (one version of) the SMFE relation crucial for the thermodynamic
consistency of the two-field formalism. Further insight follows on calculating the position
dependence of the matrix elememtsg,. Interestingly the off-diagonal elemef,, assoc-
iated with theV; - VI, coupling, provides the leading-order decay

Ka
Y12 = Xaa(lo1) ~ 71218_”21 +ee (2.22)
wherely; = [, — I, and we may approximate
Y~ Xyg — ¢1(my) Yoo A Ngp. (2.23)
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Combining these explicit results with (2.21) leads to the identification
2%15(z21) = WP (21, 22) = W (z21) (2.24)

wherez,1 = z2 — z1 and we have subtracted a bulk contribution by settig;) = 0. This
relation shows that the locus of the binding potential minimum follows the cuBsg as
h is varied (see figure 1). Hence we arrive at the elegant two-field identity

2¥12(z21) = fsing (2.25)

which we will regard as an alternative expression for the SMFE relationship. Neither (2.21)
or (2.25) have any counterpart in traditional effective-Hamiltonian approaches to wetting
transitions which neglect coupling between order-parameter fluctuations at the wall and
unbinding interface.

Before we begin our RG analysis which will focus on the flow of the second
relation (2.25) we conclude this section by making some brief remarks on the meaning of the
full SMFE relation (2.21). One interpretation is in terms of the coherence of asymptotically
long-wavelength fluctuations. This can be seen as follows [4]. Integrate out the ‘fast’
degrees of freedom of the upper fiéidy) to derive an effective Hamiltonian for the ‘slow’
lower field I1(y):

e i) / Dl o] (2.26)

At MF level (which is our only concern here) this functional integral may be evaluated
using the saddle-point approximation

H[lL] = min HP[l1,15) = H®[l4, 5] (2.27)
2
wherel,(y) is the distribution which minimizesH,‘z) for a given configuratiori; (y). For

asymptotically long-wavelength deviations of the lower field from a planar configuration it
is straightforward to show that

Vi, =V (2.28)
so the effective stiffness;;, of the lower field appearing in the Hamiltoniah " [1] is
Ti=) T (2.29)

This neatly demonstrates how the total stiffness enters the MF expressiai(@r0).
However, with this interpretation (based on a saddle-point approximation) it is not at all
obvious whether the singular form of the SMFE relation (2.25) survives if we treat the
functional integral better, i.e. incorporate the roughness ofupiénterface ind = 3. To
investigate this we turn to a RG study.

3. Renormalization group analysis

The task of this section is to show that the SMFE relation retains its form under RG flow
for d = 3. Recall that this is the marginal, or upper critical dimension, for complete wetting
transitions in systems with short-ranged forces. &ot 3 the critical exponents take the
universal valueg* = 3—-d)/(d+ 1), vy =(d —-1)/d+1) anda® = 4/(d +1). At

the marginal dimension itself, the critical exponents retain their MF values but the critical
amplitudes are non-universal (reflecting the presence of fluctuation effects). There has been
some debate on this issue recently since the two-field theory predicts that coupling effects
influence the value of observable critical amplitudes leading to different results to the CW
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model. Importantly, these new predictions are in agreement with Ising model simulation
studies although such issues will not be of concern to us here where we focus on further
developing the formalism. To this end we extend the RG analysis developed in [7] to
include the position dependence of the stiffness coefficients. We shall show that this does
not affect the value of the critical amplitudes but does allow discussion of the status of the
SMFE relationship (beyond MF theory) not possible in previous treatments.

First, note that since the fluctuations of the lower surface are small we may reliably
expandU (1) in a Gaussian fashion about its minimum value which we set to zero without
loss of generality. Hence we can writ&®[/;, I,] in the form

1
M%mbhifw[E&wmem?+mwr4mvmwvw

1 1
+ 5222(11, 12)(Vip)? + Evolf + Wl — 11)} (3.1)

where we have utilized the symmetry of the stiffness mailix = X;,. It is convenient to
separate the position-dependent contributions to the stiffnésgeBom the constant ‘free’
contributions

E;w(lla 12) =X + Az;w(lla 12) M,V = 17 2 (32)

L

where theAX,, decay to zero in the limif, — [; — oo.

We shall use an extension of the RG scheme introduced in [7] which has the benefit
of treating the fluctuations of the lower surface arising throughgié/2 term exactly,
while providing a linear treatment of thie-fluctuations. The new feature in the present
RG treatment is that we include the position dependence of all of the stiffness matrix
elementsx,,, (/1, [2) and in particular the off-diagonal teri;». To begin we separate out

a ‘Gaussian-type’ contributioﬂléz)[ll, I] from (3.1) such that
H [, 1] = HP[h, o] + Hy 1] (3.3)
where

1 1 1
HP[h, 1] = / d?y [Ezﬁ(vh)z + 235(Vi) - (Vo) + ézgg(wz)z + Evozf} (3.4)
and the interaction term due to the wall—interface coupling is

1
nglg)[ll, )] = /dzy I:EAzll(ll: L) (VID)? + AZ1o(lp — 1)(Vi) - (Vip)

1
+ EAEZZ(IL 1) (V12)? + W(lz — 11)} : (3.5)

Implicit in the definition of these Hamiltonians is a momentum cut®f{or equivalently

a short-distance cut-ofA ~!) which we assume to be the same for both figidsind /5.

We observe thaHéZ)[ll, I] is invariant under the RG transformation that integrates out all
Fourier components af and/, with wavenumberge in the rangeA/b < |k| < A and
then rescales the system according to

y—>y =y/b

li(y) — 1i(y) = li(y) i=12 (3.6)

Vo = vy = b%vg
where b is some rescaling factas > 1. The inclusion of the lower surface fluctuation
term in Héz) leads directly to the coupling constant rescaling in (3.6) which is not found in
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standard RG analyses of wetting [17]. The RG roMQ‘F)[ll, I7] under the rescaling (3.6)
is well understood and forms the basis for a perturbatory analysis Gf‘i‘,ﬁeterm. In other
words we treat the interaction termévz)[ll, 7] in a purely linearized RG fashion perturbing
around the flow of the decoupled Hamiltonif”.

The first step of the RG analysis is to integrate out the ‘fast’ modes (i.e. the short-
wavelength fluctuations) in the fluctuating fields. To this end we divi¢ig) and/,(y) into
long-wavelength and short-wavelength parts:

Liy) =17y +17(y) i=12 (3.7)
wherel=(y) andi; (y) contain all Fourier components bfwith wavenumbers in the ranges
k| < A/b andA/b < |k| < A respectively. This division means thHéz) also separates:

HPUE +17 .05 + 131 = HOUT 5] + HPT7 15 (3.8)

since the short-wavelength and long-wavelength parts have no cross-support in momentum
space. Next we define the intermediate renormalized, unrescaled Hamilt&({ign /5]
via a partial trace over the ‘fast’ modes:

1
exp—H'If. 1)) = / / DI; DIy exp—HP[5 + 15,15 +15]) (3.9)
0

where Ny is the appropriate normalization factor. By writin@,(z) in momentum space

and working to linear order irHv(f) it is straightforward to calculate these momentum
shell integrations using standard Gaussian path integration techniques. To complete the RG
transformation we must rescale the resulting equations as prescribed by (3.6).

In order to generate continuous renormalization group flow equations we consider the

infinitesimal rescaling limito = €, 8t — 0, which yields

32 9 92
2W + C(E%Azﬁ + (Z5A%+ vo)? — 255A2 )W

2 312 ol 9l
oW
+ C(ZHAY AT+ (S5A% + v9) A% AT — 2835 A ASp) = e
(3.10)
and
92 9 92 IAYT
Cl =9A%2— + (Z2A? — — 2% %A2 AY,, = —H v=12
( T T R e T TAY R o1 v
(3.11)
where, for brevity, we have written
2
C= i (3.12)

Ar[(255 — DY) A2 + T55v0]
These flow equations can be shown to correctly rederive known limits. In particular, if
¥12(11, I2) = 0 then (3.10) and (3.11) reduce to the flow equations previously derived using
this RG scheme when the cross-gradient coupling term was ignored [7]. Further, the limit
vo — oo corresponds to completely suppressing fluctuations of the lower surface so that
the coupled flow equations of Jin and Fisher [1, 2] are appropriate—this is indeed what we
find. We also comment that in the limit, — O the flow equations reduce to those which
are found from regarding the whole binding potenti@l4) + W (l21)) in a linear fashion.
This is true because we have not made use of the dependerigeonly on the relative
distancel,;.
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The flow equations (3.10) and (3.11) are very general and consequently difficult to work
with. However, we can make some simplifications pertinent to our study which are sufficient
to allow the completion of our analysis. Recall that we are considering the case where the
upper interface (represented BY unbinds from the wall while the lower one (represented
by [;) remains bound—that is, in the limit of complete wetting the two surfaces of fixed
magnetization are infinitely far apart and consequently there is no position-independent (or
free) contribution toxq,. In addition we know the leading-order position dependence of the
stiffness matrix arises from the off-diagonal elem&h$, so to leading order we ignore the
position dependence of the diagonal elemeiis and ... Hence for simplicity it suffices
to consider bare matrix elements

£ =0 AT, =0 ATy =0. (3.13)

For this model the flow equations simplify considerably. In particular the RG equations for
W and AX, decouple and reduce to

W 2 T2A2 2w 2 52w
2 _ow o "OO< Bl > e (3.14)
ot Ar TR \ZHA+w) 3y 4w X5 915
and
IAT 2 T2 92A% 2 32A%
2_ K _ ( 2 112 ) . 2, _K _ 2 12 (3.15)
at dr ¥ \ A% 4+ vo olf Az T35 0l5

while those for theAX;; merely conserveAZ;; = 0. These diffusion equations may be
straightforwardly integrated. In general the initial (bare) binding potertié (1,1) and
cross-gradient stiffness coefficientxg) (I21) are renormalized according to

WO (L) = RY[W (129)] ATY () = R (AT ()] (3.16)

where Rﬁ,’ and R(A’)E12 are the appropriate recursion operators. Thus integrating (3.14)
and (3.15) we find

I, —1)?
R;{/)[W(O)] — 47Tt o / f dl/ dlz W(O)(lz _ ll) exp{ Z %} (317)

i=1
and

0 0 (li—ll{)z
Rislazis] = 4an/ / dry d Eiz)(lz—ll)eXD{ ZW

i=1

(3.18)
where, in analogy with the capillary parametefound in single-field analyses of wetting,
we define

K2 TR A? K2
= = 3.19
= sy (zﬁAZ ¥ vo) 2= ansss (3.19)

(recall that we have sétz T = 1). Hence from (3.17) and (3.18) we see that the recursion
operators are simply related thus:

RY, =€ 2Ry (3.20)

which is our central result. Note that the right-hand side is directly related to the singular
contribution to the free energy. In particular at the matching poinof the rescaling
procedure (where fluctuations can be ignored) we may idertifiy ~ €2 W) (1))
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where (lp1) is the (renormalized) minimum of the potential. For the two-field model
considered here the leading-order singularityfing is

h _
Jeing ~ <1+ “’1;”2>— In’ (3.21)
K

and shows the influence of coupling to the surface fluctuations throughy tterm which is

absent in the corresponding capillary-wave (and Fisher—Jin) expression. Thus, as we have
noted before, the effective value of the wetting parameter is renormalized in the two-field
theory [9]. The final two equations (3.20) and (3.21) establish that the values of the critical
amplitudes in the two-field theory are robust against the inclusion of position-dependent
stiffness elements.

Finally, from (3.20) we see that the value of the stiffness matrix eIeme]nEg
(evaluated at the minimum o (l,1)) follows that of the free energy under RG flow.
Consequently, within the two-field formalism the analogue of the sum rule (2.9) is obeyed
beyond the MF level since the coefficient @f in the renormalized structure facts;(Q)
is now related to the total free energy including fluctuation-induced corrections appearing
in (3.21). Explicitly, beyond the MF level we can use the renormalized binding potential
and stiffness coefficients in the matrix equation (2.16) to calculate

1
vo+ 011 + (T2 + 2A% Y, (220) /(1 + Q%]

$11(0) =

(3.22)

where the correlation length retains its MF divergegige~ 2~%2. Thus the flow of the
SMFE relation under renormalization is sufficient to establish that the two-field theory is
consistent with the exact sum-rule requireméptO, 0) o< X,

4. Discussion and conclusions

In this paper we have extended our earlier RG study of the two-field effective Hamiltonian
for complete wetting to allow for position-dependent stiffness coefficients. Whilst the flow
equations are in general rather complicated, we have been able to establish an elegant
operator relation (3.20) for the RG flows of the cross-coupling teéxd;, and the free
energy. With this identity the bare SMFE relationAZ12(z21) = W (z21), may be regarded

as the correct initial condition to ensure that at the end of the RG trajectory the renormalized
stiffness coefficient is similarly related to the renormalized singular part of the free energy,
so that equation (2.25) is still valid including fluctuation effects. Using the renormalized
guantities, the structure factdh1(Q) at the wall has the same non-Lorentzian form as is
found in explicit MF calculations.

To finish we make some brief remarks about systems with long-ranged fluid—fluid forces
which we have thus far neglected. For this it is easier to consider a density functional
description pertinent to modelling fluid systems and write the grand-potential functional in
the local density approximation:

Qp(r)] = — / dr p(r)(u — V(r) + Flp] (4.1)

whereu is the chemical potential, and the intrinsic Helmholtz free energy is given by

1
Flpo] = /dr Sulp(m) + E//dﬁ dry p(ry)p(r)w(ryp). (4.2)
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The free energy arising from repulsive interactions between fluid molecules is treated in a
local density approximationf; (o) is the Helmholtz free-energy density of a uniform hard-
sphere fluid of density. The second term in (4.2) treats attractive forces in MF fashion:
the attractive part of the pairwise potential between two fluid moleculés), has the form
A
w(r)=—— r — 0o (4.3)
r
(whereA is a constant) characteristic of the tail of the dispersion forces. The local character
of the model is not an important deficiency for wetting by the vapour phase (drying) since
there are no significant packing or volume-exclusion effects at the wall. Here we concentrate
on the case of complete drying at a hard wall corresponding to an external potential
Vo) 00 z<0 (4.4)
“Zo 2> 0. ‘
The model shows coexistence between bulk liquid (I) and gas (g) phases (with number
densitiesp; (T) and p,(T) respectively) at subcritical temperatures and chemical potential
uw = usadT), and is known to satisfy an analogue of the second-moment sum rule such
that [18]

G2(0,0) =%, L= R (4.5)

The MF critical exponents for the complete drying transition with these forces are
B¢ =1/3,v|” = 2/3 anda;” = 4/3 and are valid for/ = 3 [19]. Consequently, according
to the sum rule (4.5) there is a next-to-leading-order singularit@.i(0, 0) of the form
(u — psaT))?3. A MF study by Dietrich and Naprkowski (DN) [20] recovers the correct
singular behaviour of the free energy and identifies the traditional binding potamtial(/)
say, for a film of thicknes$ as
Wpn (1) = Ap (i — pisadl + % + - (4.6)
where Ap = p; — p,. From this expression it is straightforward to calculggy and the
correlation lengths; &, 2 = 92Wpy /012,

Now consider a two-field Hamiltonian for this system whareorresponds to a surface
of suitable fixed densityf whilst I, has densityps = (o, — p,)/2. Thusl; is always
bound to the wall whereas is a measure of the thickness of the drying film and may be
identified with! in (4.6) above. The two-field Hamiltonian can be written as

1
H;Z)[ll(y), L(y)] = /dy |:§ 2,01, )V, - V1, + WOl lz):| (4.7)

with
00 poo 3,07(12) 3[0(2)
20, ) = / / dz; dzz Ca(z1, 22) — (4.8)
) o, al,

where C, is the second transverse moment of the direct correlation function (defined
analogously to the moment expansion in (2.7)):
82F[p] dtr
C(ry, =—  =§(r,—1r))—— 4.9
(r1, T2) 59 (D) 3p(12) (r1—m2) o) + w(r12) (4.9)
where u, = df,/dp is the chemical potential of the uniform hard-sphere fluid and
ri2 = |ry — r2|. Forzi # z, the second moment is given explicitly by

1
Co(z1, 22) = ~WT / dry riw(/(z2 — 20?4+ 7). (4.10)



7014 C J Boulter anl A O Parry

The profilep? (z; 11, 1) is the doubly constrained planar one-body distribution. Evaluating
the integrals in (4.8) we find that the diagonal elements have negligible position dependence
and may be identified with the local wall-gas and liquid—gas tensions:

$11 = Sy T2 = Ty (4.11)

On the other hand the off-diagonal element is long-ranged due to the de@yzef z2).
The integrals are dominated by the variation of density near the wall (where it is
discontinuous) and near the liquid—vapour interface. Clearly we have

212(0,12) = pg Ap C2(0, 1) + - - - (4.12)
or explicitly
ApmA
212(0,lp) = % (4.13)
Comparing with the DN binding potential we again observe that
Jsing = 2%12(0, I2) (4.14)

which establishes the SMFE for drying with long-ranged forcesdfer 3. Recall that the
upper critical dimension is less than three for such systems, so further RG analysis is not
needed.

Thus ford = 3 we have shown that the SMFE relation (2.25) is valid for both short-
ranged and long-ranged fluid—fluid forces in the presence or absence of fluctuation effects
which alter critical amplitudes. We suspect that analogues of the relation are valid in lower
dimensions and that it is in fact a general requirement for thermodynamic consistency in
theories of correlation function structure.
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